
Programming chemistry in DNA addressable bioreactors
Supplementary information

Harold Fellermann and Luca Cardelli

Appendix A: Grammar and equivalence relations

States:

S := ∅ | S ◦ S | xi : P (1)

P := 0 | P + P | q∗$P% | q | mj (2)

q := s | s∗ � s∗ (3)

S ◦ (S′ ◦ S′′) ≡ (S ◦ S′) ◦ S′′ (6)

S ◦ S′ ≡ S′ ◦ S (7)

S ◦ ∅ ≡ S (8)

P + (P ′ + P ′′) ≡ (P + P ′) + P ′′ (9)

P + P ′ ≡ P ′ + P (10)

P + 0 ≡ P (11)

q1 + (q2 + q3) ≡ (q1 + q2) + q3 (12)

q1 + q2 ≡ q2 + q1 (13)

q + � ≡ q (14)

s1 + (s2 + s3) ≡ (s1 + s2) + s3 (15)

s1 + s2 ≡ s2 + s1 (16)

s+ � ≡ s (17)

xi : P ◦ xi : P ′ ≡ xi : P + P ′ (18)

S1 ≡ S2
S ◦ S1 ≡ S ◦ S2

(19)

P1 ≡ P2

xi : P1 ≡ xi : P2
(20)

P1 ≡ P2

P + P1 ≡ P + P2
(21)

q1 ≡ q2
q∗ + q1 ≡ q∗ + q2

(22)

s1 ≡ s2
s∗ + s1 ≡ s∗ + s2

(23)

s∗1 ≡ s∗2
s∗1 � s

∗ ≡ s∗2 � s∗
(24)

s∗1 ≡ s∗2
s∗ � s∗1 ≡ s∗ � s∗2

(25)

P1 ≡ P2

q∗$P1% ≡ q∗$P2%
(26)

q∗1 ≡ q∗2
q∗1$P% ≡ q∗2$P%

(27)

Transitions:

s∗1 � s
∗
2 + s∗1 −→ s∗2 (38)

s+ s′ −→ s′′

s+ (s′ + t)$P% −→ (s′′ + t)$P%
(39)

q + q′ −→ q′′

(q + q′)$P% −→ q′′$P%
(40)

P −→ P ′

P + P ′′ −→ P ′ + P ′′
(32)

P −→ P ′

q∗$P% −→ q∗$P ′%
(33)

P −→ P ′

xi : P −→ xi : P ′
(34)

S −→ S′

S ◦ S′′ −→ S′ ◦ S′′
(35)

I : S −→ S′

I : S ◦ S̄ −→ S′ ◦ S̄
(50)

P ≡ P ′ P ′ −→ P ′′ P ′′ ≡ P ′′′
P −→ P ′′′

(36)

S ≡ S′ S′ −→ S′′ S′′ ≡ S′′′
S −→ S′′′

. (37)

∅ feed(x,mi,ν)−−−−−−−−→ x : $νmi% (41)

∅ feed tag(x,s,ν)−−−−−−−−−→ x : νs (42)

x : (s+ q∗)$P%
move(s,x,z)−−−−−−−→ z : (s+ q∗)$P%

(43)

x : s
move(s,x,z)−−−−−−−→ z : s (44)

x : s+ q∗$P%
tag(x)−−−−→ x : (s+ q∗)$P% (45)

x : q∗1$P%+ q∗2$P
′%

fuse(x)−−−−→ x : (q∗1 + q∗2)$P + P ′%
(46)

x : P
flush(x)−−−−−→ ∅ (47)

x : P
wrap(x,z)−−−−−−→ z : $P% (48)

x : q∗$P%
burst(x)−−−−−→ x : q∗$%+ P (49)

2

Programs:

π := ε | I;π (51)

ε;π = π (52)

(I;π);π′ = I; (π;π′) (53)

〈ε, S〉 −→ S (54)

〈π, S′′〉 −→ S I : S′ −→ S′′

〈I;π, S′〉 −→ S
(55)

〈π, S′〉 −→ S

〈I;π, S′〉 −→ S
(56)

S −→ S′ 〈π, S′〉 −→ S′′

〈π, S〉 −→ S′′
(57)

〈π, S〉 −→ S′ S′ −→ S′′

〈π, S〉 −→ S′′
(58)

S ≡ S′′ 〈π, S〉 −→ S′ S′ ≡ S′′′

〈π, S′′〉 −→ S′′′
(59)

Appendix B: Proofs

Proof of Lemma 1

We prove the statement:

〈π, S〉 −→ S′ =⇒
〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄. (60)

Given that there exists an inference tree that derives the clause 〈π, S〉 −→ S′, we show that there exists
a parallel inference tree that derives

〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄. The statement is proven by induction over the

structure of these derivation.
Proof:

A. Assume that 〈π, S〉 −→ S′ was derived by (54) in the last step. Hence, π = ε and S′ = S. It trivially
follows that

〈
ε, S ◦ S̄

〉
−→ S ◦ S̄, as axiom (54) holds for any state.

B. Assume that 〈π, S〉 −→ S′ was derived by (55) in the last step. Hence, π = I ′;π′.

〈π′, S′′〉 −→ S′ I : S −→ S′′

〈I;π′, S〉 −→ S′
(55)

We have as induction hypothesis that 〈π′, S′′〉 −→ S′ =⇒
〈
π′, S′′ ◦ S̄

〉
−→ S′ ◦ S̄. We can then use

rule (55) to derive:

〈
π′, S′′ ◦ S̄

〉
−→ S′ ◦ S̄

I : S −→ S′′
(50)

I : S ◦ S̄ −→ S′′ ◦ S̄
(55)〈

I;π′, S ◦ S̄
〉
−→ S′ ◦ S̄

Hence, if
〈
π′, S′′ ◦ S̄

〉
−→ S′ ◦ S̄ is derivable,

〈
I;π′, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable by induction.

C. Assume that 〈π, S〉 −→ S′ was derived by (56) in the last step. Hence, π = I;π′.

〈π′, S〉 −→ S′

〈I;π′, S〉 −→ S′
(56)

We have as induction hypothesis that 〈π′, S〉 −→ S′ =⇒
〈
π′, S ◦ S̄

〉
−→ S′ ◦ S̄. Rule (56) holds for

any state, thus we can derive, with S substituted by S ◦ S̄:〈
π′, S ◦ S̄

〉
−→ S′ ◦ S̄

(56)〈
I;π′, S ◦ S̄

〉
−→ S′ ◦ S̄

Hence, if
〈
π′, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable,

〈
I;π′, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable by induction.

3

D. Assume that 〈π, S〉 −→ S′ was derived by (57) in the last step.

S −→ S′′ 〈π, S′′〉 −→ S′

〈π, S〉 −→ S′
(57)

We have as induction hypothesis that 〈π, S′′〉 −→ S′ =⇒
〈
π, S′′ ◦ S̄

〉
−→ S′ ◦ S̄. We can then use

rule (35) to derive:

S −→ S′′
(35)

S ◦ S̄ −→ S′′ ◦ S̄
〈
π, S′′ ◦ S̄

〉
−→ S′ ◦ S̄

(57)〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄

Hence, if
〈
π, S′′ ◦ S̄

〉
−→ S′ ◦ S̄ is derivable,

〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable by induction.

E. Assume that 〈π, S〉 −→ S′ was derived by (58) in the last step.

〈π, S〉 −→ S′′ S′′ −→ S′

〈π, S〉 −→ S′
(58)

We have as induction hypothesis that 〈π, S〉 −→ S′′ =⇒
〈
π, S ◦ S̄

〉
−→ S′′ ◦ S̄. Again, we can use

rule (35) to derive:

〈
π, S ◦ S̄

〉
−→ S′′ ◦ S̄

S′′ −→ S′
(35)

S′′ ◦ S̄ −→ S′ ◦ S̄
(58)〈

π, S ◦ S̄
〉
−→ S′ ◦ S̄

Hence, if
〈
π, S ◦ S̄

〉
−→ S′′ ◦ S̄ is derivable,

〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable by induction.

F. Finally, assume that 〈π, S〉 −→ S′ was derived by (59) in the last step.

S ≡ S′′ 〈π, S′′〉 −→ S′′′ S′′′ ≡ S′

〈π, S〉 −→ S′
(59)

We have as induction hypothesis that 〈π, S′′〉 −→ S′′′ =⇒
〈
π, S′′ ◦ S̄

〉
−→ S′′′ ◦ S̄. Thus, we can infer:

S ≡ S′′
(19)

S ◦ S̄ ≡ S′′ ◦ S̄
〈
π, S′′ ◦ S̄

〉
−→ S′′′ ◦ S̄

S′′′ ≡ S′
(19)

S′′′ ◦ S̄ ≡ S′ ◦ S̄
(59)〈

π, S ◦ S̄
〉
−→ S′ ◦ S̄

Hence, if
〈
π, S′′ ◦ S̄

〉
−→ S′′′ ◦ S̄ is derivable, then

〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable by induction.

Proof of Lemma 2

We prove the statement:〈
π′, S

〉
−→ S′ ∧

〈
π′′, S′

〉
−→ S′′ =⇒

〈
π′;π′′, S

〉
−→ S′′ (61)

Proof: Again, the proof is performed inductively over the structure of the derivation, in particular the
derivation of the clause 〈π′, S〉 −→ S′ for arbitrary derivations of the clause 〈π′′, S′〉 −→ S′′.

A. Assume that 〈π′, S〉 −→ S′ was derived by (54) in the last step. Hence, π′ = ε and S′ = S.

〈ε, S〉 −→ S (54)

For any π′′ with 〈π′′, S′〉 −→ S′′, we then have 〈π′′, S′〉 −→ S′′ = 〈ε;π′′, S′〉 −→ S′′ because ε;π′′ = π′′

by definition of ‘;’ among programs.

4

B. Assume that 〈π′, S〉 −→ S′ was derived by (55) in the last step. Hence, π′ = I;π′′′. As induction
hypothesis we have that 〈π′′′;π′′, S′〉 −→ S′′ is derivable for any π′′. We can then infer that

〈π′′′;π′′, S′〉 −→ S′′ I : S −→ S′
(55)

〈I;π′′′;π′′, S〉 −→ S′′

Hence, if 〈π′′′;π′′, S′〉 −→ S′′ is derivable, we know by induction that 〈π′;π′′, S〉 −→ S′′ is derivable.

C. Assume that 〈π′, S〉 −→ S′ was derived by (56) in the last step. Hence, π′ = I;π′′′. We have as
induction hypothesis that 〈π′′′;π′′, S′〉 −→ S′′ is derivable for any π′′. We can then infer that

〈π′′′;π′′, S〉 −→ S′′
(56)

〈I;π′′′;π′′, S〉 −→ S′′

Hence, if 〈π′′′;π′′, S〉 −→ S′′ is derivable, we know by induction that 〈π′;π′′, S〉 −→ S′′ is derivable.

D. Assume that 〈π′, S〉 −→ S′ was derived by (57) in the last step. As induction hypothesis we have that
〈π′;π′′, S′′′〉 −→ S′′ is derivable for any π′′. We can then infer that

S −→ S′′′ 〈π′;π′′, S′′′〉 −→ S′′
(57)

〈π′;π′′, S〉 −→ S′′

Hence, if 〈π′;π′′, S′′′〉 −→ S′′ is derivable, we know by induction that 〈π′;π′′, S〉 −→ S′′ is derivable.

E. Assume that 〈π′, S〉 −→ S′ has been derived by (58) in the last step:

〈π′, S〉 −→ S̄ S̄ −→ S′

〈π′, S〉 −→ S′
(58)

We have the second hypothesis 〈π′′, S′〉 −→ S′′, and we need to show that 〈π′;π′′, S〉 −→ S′′. By
second hypothesis and (57) with S̄ −→ S′ we obtain:

S̄ −→ S′ 〈π′′, S′〉 −→ S′′
(57)〈

π′′, S̄
〉
−→ S′′

Hence, if we have as induction hypothesis that 〈π′, S〉 −→ S̄ and
〈
π′′, S̄

〉
−→ S′′ then we can follow

〈π′;π”, S〉 −→ S′′.

F. Finally, assume that 〈π′, S〉 −→ S′ was derived by (59) in the last step:

S ≡ S0 〈π′, S0〉 −→ S1 S1 ≡ S′

〈π′, S〉 −→ S′
(59)

We are in the case 〈π′, S0〉 −→ S1 with S ≡ S0 and S1 ≡ S′. Our second hypothesis is that
〈π′′, S′〉 −→ S′′, and we need to show that 〈π′;π′′, S〉 −→ S′′. By (59) we then have also that
〈π′′, S1〉 −→ S′′:

S1 ≡ S′ 〈π′′, S′〉 −→ S′′
(59)

〈π′′, S1〉 −→ S′′

By induction hypothesis we have that 〈π′, S0〉 −→ S1 and 〈π′′, S1〉 −→ S′′ =⇒ 〈π′;π′′, S0〉 −→ S′′.
By (59) again, 〈π′;π′′, S〉 −→ S′′.

5

Proof of Theorem 3

Proof: by induction over the structure of S.

A. Case S ≡ ∅.
This holds in the initial state. The program to create S ≡ ∅ is ε: 〈ε, ∅〉 → ∅.

B. Case S ≡ S′ ◦ S′′ with S′, S′′ ∈ ω+(Πmin).
By induction, there exist programs π′ and π′′ such that 〈π′, ∅〉 −→ S′ and 〈π′′, ∅〉 −→ S′′. Lemma
1 then implies that 〈π′, ∅ ◦ ∅〉 −→ S′ ◦ ∅, and 〈π′′, S′ ◦ ∅〉 −→ S′ ◦ S′′. It follows with lemma 2 that
〈π′;π′′, ∅ ◦ ∅〉 −→ S′ ◦ S′′. But ∅ ◦ ∅ ≡ ∅ and S′ ◦ S′′ ≡ S, hence 〈π′;π′′, ∅〉 −→ S due to inference rule
(59).

C. Case S ≡ xi : P .

C.1. Subcase P ≡ 0.
This holds in the initial state. The program to create S ≡ xi : 0 is ε: 〈ε, ∅〉 → xi : 0.

C.2. Subcase P ≡ P ′ + P ′′.
This case can be reduced to case B. by means of the distributive relation (18): xi : P ′ + P ′′ ≡
xi : P ′ ◦ xi : P ′′.

C.3. Subcase P ≡ q$P ′% with d(P ′) = 0.

C.3.1. Subsubcase P ≡ $0%.
This is achieved by the program π = feed(xj ,m, 0); transport(xj , xi, xk, σ) for arbitrary
m ∈M, xj ∈ Lfeed, xk ∈ Lfeed tag, σ ∈ T .

C.3.2. Subsubcase P ≡ $mj%.
This is achieved by the program π = feed(xj ,mj , 1); transport(xj , xi, xk, σ) for xj ∈ Lfeed,
xk ∈ Lfeed tag, σ ∈ T .

C.3.3. Subsubcase P ≡ $sk%.
Since d($sk%) = 2, we have to show that xi : $sk% 6∈ ω+(Πmin). Observe that feed

and feed tag either raise the nesting level of a state from 0 to 1, or leave it invariant if it
was higher than 1. The instructions tag, move and fuse leave the nesting level unaltered,
whereas flush reduces the nesting level to 0 or leaves it invariant. Therefore, the instruction
set Imin does not contain any instruction that would increase the nesting level from 1 to 2.
Therefore, S ≡ xi : $sk% is not constructable from ∅.

C.3.4. Subsubcase P ≡ $P ′ + P ′′%.
By induction, there exists a program π such that 〈π, ∅〉 −→ xi : $P ′% ◦ xj : $P ′′%. Then,
for some xk ∈ Lfeed tag, σ ∈ T , the program π;π′ will produce S, where π′ is the following
program:

xi : $P ′% ◦ xj : $P ′′%

feed tag(xk, σ, 1) xi : $P ′% ◦ xj : $P ′′% ◦ xk : σ

move(xk, xj , σ) xi : $P ′% ◦ xj : $P ′′%+ σ

tag(xj) xi : $P ′% ◦ xj : σ$P ′′%

move(xj , xi, σ) xi : $P ′%+$P ′′%

fuse(xi) xi : σ$P ′ + P ′′%

feed tag(xk, σ � �, 1) xi : σ$P ′ + P ′′% ◦ xk : σ � �
move(xk, xi, σ � �, 1) xi : σ$P ′ + P ′′%+ σ � �

xi : $P ′ + P ′′%

C.3.5. Subsubcase P ≡ (sk + q)$P ′%.
By induction, there exists a program π such that 〈π, ∅〉 −→ xi : q$P ′%. Then, for any

6

xk ∈ Lfeed tag, the program π;π′ will produce S, where π′ is the program:

xi : q$P%

feed tag(xj , sk, 1) xi : q$P% ◦ xj : sk

move(xj , xi, sk) xi : sk + q$P%

tag(sk) xi : (sk + q)$P%

C.4. Subcase P ≡ mj .
We have to show that xi : mj 6∈ ω+(Πmin). First, observe that d(xi : mj) = 0. The only way to
introduce mj is by means of the command feed(xi,mj , 1) which will result in a nesting level of
1. As discussed in subcase C.3.3., the only means to decrease the nesting level is by means of
the instruction flush. However, flush will transform the state xi : $mj% into the empty state,
which is not equivalent to S. Thus, there is no program in Πmin able to generate S ≡ xi : mj .
Therefore, S 6∈ ω+(Πmin).

C.5. Subcase P ≡ sk.
This is achieved by the program π = feed tag(xj , sk, 1); move(xj , xi, sk), for any xk ∈ Lfeed tag.

Proof of Theorem 4

Proof: The proof is identical to the one of theorem 3, where subsubcase C.3.3. is replaced by the more
general subsubcase:

C.3.3’ Subsubscase P ≡ $P ′% with d(P ′) > 0, P 6≡ P ′ + P ′′, and P 6≡ mj .
By induction, there exists a program π ∈ Πwrap, such that 〈π, ∅〉 → xj : P ′ for xj ∈ Lwrap in. The
desired state is obtained by the program π;π′, where π′ is the program

xj : P ′

wrap(xj , xk) xk : $P ′%

transport(xk, xi, xl, σ) xi : $P ′%

where xk ∈ Lwrap out, xl ∈ Lfeed tag, σ ∈ T .

Proof of Theorem 5

Proof: The proof is identical to the one of theorem 4 where case C.4. is replaced by:

C.4’ Case P ≡ mj .
By induction, there exists a program π ∈ Πburst, such that 〈π, ∅〉 → xi : σ$mj%. The desired state
is obtained by the program π;π′, where π′ is the program

xi : σ$mj%

burst(xi) xi : σ$%+mj

move(xi, xk, σ) xi : mj ◦ xk : σ$%

flush(xk) xi : mj

7

Proof of Theorem 6

Proof: Again, we proof the theorem by induction over the structure of S.

A. Case S ≡ ∅.
Nothing needs to be done in this case: 〈ε, ∅〉 → ∅.

B. Case S ≡ S′ ◦ S′′.
Just as in the proof for theorem 3, we know by induction that there exist π′, π′′ such that 〈π′, S′〉 → ∅

and 〈π′′, S′′〉 → ∅. If follows through lemmas 1 and 2 that 〈π′;π′′, S′ ◦ S′′〉 → ∅.

C. Case S ≡ xi : P .

C.1. Subcase P ≡ 0.
Nothing needs to be done in this case: 〈ε, ∅〉 → ∅.

C.2. Subcase P ≡ P ′ + P ′′.
This is structurally equivalent to xi : P ′ ◦ xi : P ′′ and is therefore reduced to case B.

C.3. Subcase P ≡ q$P ′%.

C.3.1. Subsubcase q ≡ �.

xi : $P%

feed tag(xj , σ) xi : $P% ◦ xj : σ

move(xj , xi, σ) xi : σ +$P%

tag(xi) xi : σ$P%

This reduces the problem to subsubcase C.3.2.

C.3.2. Subsubcase q ≡ sk + q′.
For xj ∈ Lflush, the following program resets the state:

xi : (sk + q)$P%

move(xi, xj , sk) xj : (sk + q)$P%

flush(xj) ∅

C.4. Subcase P ≡ mj .
If xi ∈ Lflush, the program flush(xi) will reset the state. Likewise, if xi ∈ Lwrap in, the program
wrap(xi, xj) will transform the state into xj : $mj% for any xj ∈ Lwrap out and reduces the
problem to subcase C.3.1.. On the other hand, if xi 6∈ Lflush ∪ Lwrap in, we have to show that
S is not an element of ω−(Πx). Note that all instructions feed, feed tag tag, move, burst
leave xi : mj invariant under transition. Thus, there is no sequence of instructions that would
transform xi : mj into the empty state. Therefore, xi : mj 6∈ ω−(Πx) for xi 6∈ Lflush ∪ Lwrap in.

C.5. Subcase P ≡ sk.
For xj ∈ Lflush, the following program resets the state:

xi : sk

move(xi, xj , sk) xj : sk

flush(xj) ∅

